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The relations among the morphological parameters of binary polymer blends with the morphology of well- 
dispersed particles are quantitatively studied to correct the error from the simple cubic (sc) lattice assumption 
made in previous works. A new morphological parameter, the particle spatial distribution parameter ~, is defined. 
A new equation for correlating the spatial distribution with other morphological parameters is derived. The 
relationships among them are discussed. The values of the spatial distribution parameter for poly(vinyl chloride)/ 
nitrile rubber, polypropylene (PP)/EPDM and PP/EVA blends appear to be a constant. The errors stemming from 
the sc lattice assumption for these blends are analysed. © 1998 Published by Elsevier Science Ltd. All rights 
reserved. 
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Introduction 

The average matrix ligament thickness (T, average 
surface to surface interparticle distance) is a morphological 
parameter which can be correlated with some physical and 
mechanical properties of multiphase materials. For exam- 
ple, plastics can be toughened by the incorporation of rubber 
particles, and there is a critical value (Tc) of T at which a 
brittle-ductile transition takes place, i.e. a blend is brittle 
when T>Tc, and is tough when T<To 1-11. Particle 
dispersion also has a marked influence on the impact 
toughness of polymer blends 12-1s. It has been well known 
that the agglomeration of particles results in a brittle blend. 
Compared with the morphology of agglomerated particles, 
the morphology of well-dispersed particles will consider- 
ably increase the toughening efficiency. Furthermore, the 
toughening efficiency for the blends with the pseudonet- 
work morphology is much higher than that for blends with 
the morphology of well-dispersed particles 17'18. 

A simple equation for relating T to particle size (d) and 
particle volume fraction (4)) is usually used to correlate 
impact toughness with T 1-9. In some cases the toughness-T 
relation does not give a brittle-ductile transition master 
curve for T < To for instance, nylon/rubber blends 1'3'4 and 
high density polyethylene (HDPE)/CaCO3 composites 7,s. 
Recently we derived a new equation for correlating T to d, 
particle size distribution (a) and 4) 19. We pointed out that the 
equation is generally applicable to binary polymer blends 
with a log-normal distribution of particle size and a 
configuration of well-dispersed particles in a polymer 
matrix. The new equation has been successfully employed 
to interpret the splitting of the brittle-ductile transition 
master curve of HDPE/CaCO3 composites for T < To The 
splitting has been attributed to the neglect of the influence of 
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o on T in the above simple equation. This example shows 
that the choice of an appropriate equation is important. This 
importance will be seen further in our work published 
elsewhere. 

In fact, the configuration of well-dispersed particles 
was simulated by a simple cubic (sc) lattice in previous 
work 1-19. This assumption has introduced the configura- 
tional error. Accordingly, it is the purpose of this paper to 
improve on our earlier equation by the introduction of a 
particle spatial distribution based on the sc lattice. The 
configurational errors originating from the sc lattice 
assumption for poly(vinyl chloride) (PVC)/nitrile rubber 
(NBR), polypropylene (PP)/EPDM and PP/EVA blends 
were underestimated in our previous paper and will be 
corrected in this work. 

Evaluation of the average centre-to-centre interparticle 
distance 

The definition of particle size distribution. The log-normal 
distribution has been shown to be suitable for describing the 
feature of particle size distribution in many polymer blend 

4 6  22 systems " - . The probability densityf(di) of a particle size 
di is thus defined by 23 
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and 
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In the case of monodispersity, a = 1; and a > 1 when there 
is polydispersity. 

The average centre-to-centre interparticle distance. The 
average centre-to-centre interparticle distance (L) is a key 
factor in relating the particle spatial distribution to T, as will 
be shown in the next section of this paper. We do not set any 
limit to the particle spatial distribution parameter in the 
derivation of a universal equation for evaluating L. The 
centre-to-centre interparticle distance (LD of two neigh- 
bouring hard spheres i and j is 

Lk = Tk + ½(di + dj) (4) 

where T k is the matrix ligament thickness of the two adja- 
cent spheres. The word 'hard' is emphasised to avoid sphere 
overlapping. The sum of equation (4) gives 

E nkLk = ~-. nkTk + nidi + nj (5) 
k=l  k=] j = l  

The average values L and T are the arithmetic means accord- 
ing to equation (5). Thereafter 

N N 

E n,L,=L E (6) 
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and 
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Because the particles obey log-normal distribution and the 
blend system has only one d value, we have 23 

N N N 

E nidi = E njdj = exp(ln d + 0.5 ln2o) E ni (8) 
i=1 j = l  i=1 

One can easily find that 

N N 

E nk = E ni 
k=l  i=1 

(9) 

Insertion of equations (6)-(9) into equation (5) yields 

L = T + d exp(0.5 ln2o) (10) 

Equation (10) gives the exact relation of L to T, d and a for 
hard spheres fitting the log-normal distribution and occupy- 
ing any lattice. 

The definition of particle spatial distribution. The other 
two factors governing the result of equation (10) are the 
particle dispersion state and the neighbouring number con- 
sidered in addition to d, a and 4,. Clearly the L value for the 
nearest two particles in the blend system where particles 
occupy the random lattice is the smallest. If  the second 
neighbour is included, the L increases, and so on. Therefore 
L increases with the neighbouring number considered. So 
does the value of T. 

For the sc lattice, we have 

Lsc = Tsc + d exp(0.5 ln2a) (11) 

In the case of the same d, a and $, we define the particle 
spatial distribution parameter (~) for the morphology of 
well-dispersed particles as 

L T + d exp(0.5 lnaa) 

-- L~c -- Tsc + d  exp(0.5 ln2a) (12) 

The geometric significance of ~, as defined by equation (12), 
is the ratio of L for the configuration of well-dispersed par- 
ticles to L,~ when d, a and ¢h are identical. 

Two particle configurations, the sc lattice and the 
morphology of well-dispersed particles, are of interest 
here. Figure 1 schematically displays the two configurations 
in order that the value of ~ can be estimated. The 
coordination number for the sc lattice is 6 (Figure la). 
The configuration of well-dispersed particles is shown in 
Figure lb. We fix the neighbouring number for the 
configuration of well-dispersed particles at 6 to eliminate 

24 its influence on L. Powell constructed a lattice for random 
close packing whose mean coordination is 6. The volume 
restriction for the morphology of well-dispersed particles is 
much less rigorous than that for random close packing. So, 
the neighbouring number (6) for the morphology of well- 
dispersed particles is a very reasonable value. 

The lines connecting the centres of particles in Figure la 
would be straight, while the lines connecting the centres of 
particles in Figure lb would be zigzag. We judge the ~ for 
the morphology of well-dispersed particles to be -> 1 from 
the basic knowledge that the straight line connecting two 
points is shorter than any other line. ~ = 1 when the 
morphology of well-dispersed particles is transformed into 
the sc lattice. 

The relationship between ~ and other morphological 
parameters 

The average matrix ligament thickness for the sc lattice 
(Tsc) can be exactly calculated by 19 

T~ = d 7r exp(1.5 ln2a) - exp(0.5 lnSa) (13) 

Rearrangement of equation (13) gives (),3 
d "Jr T~c + d  exp(0.5 ln2a) = ~ exp(1.5 ln2a) (14) 
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Figure 1 Schematic representations of (a) the simple cubic lattice and (b) 
the morphology of well-dispersed particles. The filled symbols represent 
the dispersed particles 
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Combination of equation (12) and equation (14) yields 

In general, equation (15) can be used to exactly calculate T 
for binary polymer blends with the morphology of well- 
dispersed particles. 

In the case of the same d, o and 4~, the normalised T is 
given by 

T ~ ~-0 exp(1.5 ln2a) - exp(0.5 ln2a) 

• exp(1.5 ln2a) - exp(0.5 ln2a) 

The influence of ~ on T can be analysed using equation (16). 
T/Tsc is plotted versus a, as shown in Figure 2. It is seen that 
for a constant ~, e.g. 1.1, T/T~ decreases with o for a given q~ 
and that the higher the 4~, the larger the T/Tsc. It is clear that 
the T/T~ increases with ~ at constant a and ~b. 

Now we re-evaluate the experimental T values in our 
earlier work ~9 and estimate the ~ values for the PVC/NBR, 
PP/EPDM and PP/EVA blends. The T values approximately 
fit the log-normal distribution. The experimental T given in 
Ref. 19 is the value at the probability of 50%, which is 
labeled as Te here. The distribution of T is described by the 
parameter aT. An arithmetic mean value T is defined 
throughout our work. Thus, the relation between T, Te 
and ar is 23 

T = exp(ln Te +0.5  ln2aT) (17) 

To correct the errors in T calculated from previous equa- 
tions, the other two equations reported in literature are cited 
as follows. Assumimg ~ = 1, Wu 1 obtained 

':3 ] 
T = d  7r - 1 (181 

To account for the effect of o on T, Wu 4 proposed 

T = d I ( ~ ) ' / 3 - l ]  exp(ln2a) (19) 

Using the data in Ref. 19 we obtain the T and ~ values for the 
PVC/NBR, PP/EPDM and PP/EVA blends, which are listed 
in Table 1. The Tvalue for the PVC/NBR blend is 0.109/~m. 
The values calculated from equation (131, equation (18) and 

equation (19) are 0.076, 0.051 and 0.041/zm, respectively. 
The corresponding errors are 30, 53 and 62%, rather than 5, 
36 and 49% reported in Ref. 19. Equation (13) gives the 
smallest error, which arises from the sc lattice assumption. 
However, the errors for equation (18) and equation (19) are 
much greater and have been mentioned in Ref. 19. The same 
conclusion can be reached from the data for the PP/EPDM 
and PP/EVA blends in Table 1. We are able to calculate the 

values for PVC/NBR, PP/EPDM and PP/EVA blends 
using equation (15) and the experimental data. The values 
are 1.21, 1.18 and 1.16, and are greater than 1. These values 
seem a constant, though other morphological parameters are 
dramatically different. 

It is very difficult to obtain the three-dimensional value of 
T. Two-dimensional scanning electron microscopy pictures 

19 were used to measure T . The scalene triangles for 
connecting centres of dispersed particles, as described by 
Chan 25, were drawn in that work. However, the mean 
neighbouring number for the above measurements on T has 
not yet been evaluated. It may be around 12, and is, thus, 
larger than the neighbouring number 6 required by this 
work. Therefore, the above experimental ~ values greater 
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Figure 2 Calculated variations of T/T~c with o at varying ( and 4~ for the 
binary polymer blends with the morphology of well-dispersed particles 

Table 1 The ~ values for PVC/NBR, PP/EPDM and PP/EVA blends with the morphology of well-dispersed particles 

Morphological parameters Blends 

PVC/NBR PP/EPDM PP/EVA 

d (/~m) 0.073 0.51 0.32 
a 1.58 2.31 1.59 
4~ 0.136 0.243 0.243 
aT 2.20 1.90 1.90 
Te (p.m) 0.080 1.22 0.250 
T (/~m) 0.109 1.50 0.307 
T~¢ (from equation (131) (/zm) 0.076 1.16 0.210 
Error a (%) 30(51 b 23(5) 32(16) 
T~ (from equation (18)) (#m) 0.051 0.30 0.12 
Error (%) 53(36) 80(75) 61 (52) 
T2 (from equation (191) (p.m) 0.041 0.15 0.093 
Error (%) 62(49) 90(88) 70(63) 

(from equation (15)) 1.21 I. 18 I. 16 

"The error is defined as ITc - TI x 100/T, where Tc is the value calculated from equations (13), (18) and (19). 
J~Fhe data in the parentheses are those reported in Ref. 19 
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than 1 are slightly larger than those measured based on the 
neighbouring number 6. 

Conclusions 

A new equation for calculating the average centre-to- 
centre interparticle distance (L) of hard spheres fitting log- 
normal distribution (see equation (10)) is derived with no 
restriction on the type of configuration. The equation is 
exact and generalised. 

A new morphological parameter, the particle spatial 
distribution parameter (~), is defined by equation (12). In 
this work, it denotes the ratio of the L for the morphology of 
well-dispersed particles to the Lsc for the simple cubic (sc) 
lattice when the particle size (d), particle size distribution 
parameter (o) and particle volume fraction (~b) are identical. 

is related to d, o, ~b and the average matrix ligament 
thickness (7) by equation (15). The greater the value of ~, 
the more rapid the T decreases with a. Moreover, the higher 
the ~b, the more significant the influence of o on T. The 
experimental ~ values for the PVC/NBR, PP/EPDM and PP/ 
EVA blends are 1.21, 1.18 and 1.16, and appear to be 
constant. These ~ values greater than 1 indicate that the 
particles in the above blends occupy a random lattice rather 
than an sc lattice. 

The errors in T stemming from the sc lattice assumption 
have been corrected in this paper and are greater than those 
reported in Ref. 19. 
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